Simulation of Label-Free PK Evaluation of Nanoparticles in Complex Media

Lew Brown¹, Jean-Luc Fraikin¹, Franklin Monzon¹, Ngoc Do¹, Xiao Cong², Joseph Katakowski²,

Brian Rago², Wei Zhang², Roger Pak², Shawn Doran², and Derek W. Bartlett² ¹Spectradyne LLC, 23875 Madison St, Suite A, Torrance CA 90505

²Pfizer Inc., 235 East 42nd Street, New York, NY 10017

Purpose

It would be highly desirable if nanoparticle drug products could be measured in a complex biological matrix such as plasma, as this information could enable label-free nanoparticle pharmacokinetics (PK) evaluation. An experiment was performed to determine if Microfluidic Resistive Pulse Sensing (MRPS[™]) might be capable of achieving this.

Methods

90nm Nanobead NIST Traceable sizing standards (Polysciences, Warrington, PA) were used as surrogate nanoparticles (NP) for evaluation of particle concentration in mouse plasma* using the Spectradyne nCS1 MRPS

instrument (Figure 1). The particle concentration of the stock was first determined by preparing dilutions in a suitable buffer solution and quantifying using the nCS1. Subsequently, mouse plasma was spiked with the particles to achieve a dilution series for examination Figure 1: The Spectradyne nCS1 MRPS system occupies a small bench top footprint, approximately 1.5 sq ft with the nCS1 instrument. A background (left). Only 3 µL of a sample is required for analysis using a disposable microfluidic cartridge (right), which sample of mouse plasma alone was used prevents contamination between measurements to determine the background subtraction and eliminates cleaning requirements. for subsequent samples containing spiked particles. The derived particle concentrations from the plasma samples were compared to the "true" values calculated from the dilution of the particle stock in buffer. For all measurements, 200-nm Nanobead NIST Traceable sizing standards (Polysciences, Warrington, PA) were also spiked in at a known concentration to serve as an in-measurement control for instrument function.

Results (continued)

Results

Figure 4: Measurement of the 90 nm bead solution diluted in mouse plasma to the following concentrations: 0 (plasma only), 5E10,1E11,1E12,1E13 p/mL. Further dilutions (with 1% Tween 20 in 1X PBS, filtered at 20nm to remove any measurable particulates) were made with each of these to 1000-fold prior to measurement. Note 208nm controls also added. shown in Figures 3 and 4, respectively. The results showed that the detection limit for the simulated nanoparticles in plasma to be ~1E11p/mL, at both the 100-fold (Figure 3) and 1000-fold (Figure 4) dilutions.

Overlaying the 100X and 1000X final dilutions clearly shows a simple 10X shift in concentration, as expected (Figure 5). This is an indication of the excellent linearity of the MRPS concentration measurements

Finally, a plasma-only sample signal was subtracted from each measurement to remove the background

Figure 5: Overlay of the 100X (Figure 3) and 1000X (Figure 4) final dilutions. All of the 90nm + background plots merely shift lower by a factor of 10 going from the higher to lower dilution, but the detection limit remains the same at ~1E11p/mL. Note the consistency of the equal concentration 208nm inmeasurement controls.

signal from the plasma. Figure 6 shows the results in a tabular and graphical format, with concentration measured in the range 80-130nm, confirming the detection limit of ~1E11p/mL, at both the 100-fold and 1000-fold dilutions.

The 90nm particle stock was

Figure 2: Measurement of the 90nm particle stock, diluted 1:1000, showing stock concentration of 1.07E13 p/mL (corrected to stock). Note 208nm controls also added.

diluted in mouse plasma to the following concentrations: 0 (plasma only), 5E10,1E11,1E12,1E13 p/mL. Further dilutions (with 1% Tween 20 in 1X PBS, filtered at 20nm to remove any measurable particulates) were made with each of these to 100-fold and 1000-fold for measurement. These results are

Plasma-subtracted Concentrations					Plasma-subtracted particles in size range 80-130 nm (100x dilution)	
Spiked 90nm Concentration in Plasma	Dilution in PBST	Concentration (Particles/mL)	Dilution in PBST	Concentration (Particles/mL)	6.00E+10 5.00E+10 4.00E+10 3.00E+10 2.00E+10 	
5E10	100x	-5.43E+08	1000x	-2.67E+07	Image: Section of the section of th	
1E11	100x	2.18E+06	1000x	8.37E+07	Plasma-subtracted particles in size range 80-130 nm (1000x dilution)	
1E12	100x	5.69E+09	1000x	5.76E+08	a solution a subtracted a subtracted tion (b article d a subtracted e e e e e e e e e e e e e e e e e e	
1E13	100x	5.94E+10	1000x	6.91E+09	Image: Second	

Figure 6: Plasma-subtracted concentrations for 100x dilution (Column 3 of table and blue dots) and 1000x dilution (Column 5 of table and red dots), showing that for both dilutions the detection limit for the simulated PK in serum was ~1E11p/mL.

Conclusions

The detection limit for the simulated 90nm drug nanoparticles in plasma using MRPS was ~1E11p/mL. The next step will be to attempt duplication of these results using real drug NP's under the same conditions. Future efforts will also aim to reduce the matrix background without affecting NP concentration, in order to lower the concentration detection limit. MRPS is uniquely qualified for these measurements, because it measures each particle individually using an electrical signal. Optical techniques such as DLS or NTA cannot be used for this type of analysis, due to their sampledependent Limit of Detection¹.

References

* All samples were collected in accordance with regulations and established guidelines for humane treatment of research animals and were reviewed and approved by an Institutional Animal Care and Use Committee